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Abstract
We apply the Bogomol’nyi technique, which is usually invoked in the study of
solitons or models with topological invariants, to the case of elastic energy of
vesicles. We show that the spontaneous bending contribution caused by any
deformation from metastable bending shapes falls into two distinct topological
sets: shapes of spherical topology and shapes of non-spherical topology
experience respectively a deviatoric bending contribution à la Fischer and a
mean curvature bending contribution à la Helfrich. In other words, topology
may be considered to describe bending phenomena. Besides, we calculate
the bending energy per genus and the bending closure energy regardless of
the shape of the vesicle. As an illustration we briefly consider geometrical
frustration phenomena experienced by magnetically coated vesicles.

PACS numbers: 02.40.-k, 87.16.Dg, 75.10.Hk, 11.27.+d

Our motivation is to amplify on the observation of vesicles with arbitrary low genus (number
of holes/handles) exhibiting conformal diffusion (spontaneous conformal transformation),
namely the existence of two conservation laws for vesicles [1–6]. The genus is a topological
invariant: a quantity conserved under smooth transformations which does not depend on the
static or dynamic equations of the system under consideration. In contrast, conformal diffusion
provides evidence that the system Hamiltonian is invariant under conformal transformations.
Whereas the Nœther theorem [7, 8] may be used to treat the latter invariance law in order to
compute the corresponding conserved current and constant charge, the Bogomol’nyi technique
enables one to treat successfully various models with topological invariants [9–11]. In this
paper we focus on the topological conservation law only; we defer the conformal diffusion to
future articles.

To obtain the Bogomol’nyi relationships we write down for vesicles of arbitrary genus
a bending Hamiltonian as a covariant functional invariant under conformal transformations
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which depends on their shape only and which is suitable for the Bogomol’nyi decomposition.
Applying the converse of the remarkable theorem of Gauss [12] enables us to construct
such a Hamiltonian. Instead of describing shapes by their Monge representation (i.e. their
surface equation) as customary [2, 3], we characterize shapes by their metric tensor and their
shape tensor: the total integral of the shape tensor self-product is our successful candidate.
Then the Bogomol’nyi technique reveals the topological nature of bending phenomena while
differential geometry extends forward the Bogomol’nyi relationships. In particular we show
that any deformation of the non-trivial metastable shapes spontaneously leads to a deviatoric
bending contribution à la Fischer [13–15] for shapes of spherical topology and to a mean
curvature bending contribution (up to a conformal transformation of the ambient space) à la
Helfrich [2, 3, 16] for shapes of non-spherical topology: our approach shows that the bending
contribution expression depends on the shape topology—our main result concisely contained
in formulae (20), (21) and (26).

Before describing the bending energy of vesicles, we first succinctly recall the
Bogomol’nyi technique (equations (1)–(8) below) through the nonlinear σ -model [9, 10, 17].
More precisely we consider spin fields on curved surfaces S with the nonlinear σ -model as
interaction [18–21]:

Hmag = 1
2 J

∫
S

√
g d�gijhαβ∂in

α∂jn
β (1)

where the order parameter nα corresponds to a point on the two-sphere S
2 and the

phenomenological parameter J to the coupling energy between neighbouring spins. The metric
tensors gij and hαβ describe respectively the support manifold S (i.e. the underlying geometry)
and the order parameter manifold S

2: as customary, g represents the determinant det(gij ) and√
g d� the area element. Assuming homogeneous boundary conditions, when applicable,

allows one to map each boundary to a point, then the support manifolds S are topologically
equivalent to the torus Tg of genus g. Consequently, the order parameter field nα effects
the mapping of the compactified support Tg to the two-sphere S

2 which is classified by the
cohomotopy group �2(Tg) isomorphic to the set of integers Z [22]: two spin configurations
belonging to distinct classes cannot be smoothly deformed into one another. Since there exists
an infinite number of classes that map the torus Tg of genus g to the two-sphere S

2, for each
compactified surface S the space of spin configurations splits into an infinite number of distinct
components, each characterized by a definite topological invariant. Here the topological
invariant is the degree of mapping Q, which is expressed in terms of the order parameter
field nα as

Q = 1

8π

∫
S

√
g d�eijfαβ ∂in

α∂jn
β (2)

with eij and fαβ the antisymmetric tensors associated with the support manifold S and the
target (i.e. the order parameter) manifold S

2, respectively. In spherical coordinates the total
integral (2) immediately reads as the winding number. Note that the topological conservation
law arises from the nature of the order parameter field nα only. Henceforth we demonstrate
how the Bogomol’nyi technique enables one to study topological spin configurations subject
to the magnetic Hamiltonian (1). By introducing the self-dual tensors

T ±
iα ≡ 1√

2

[
∂inα ∓ eirfακ ∂

rnκ
]

(3)

which satisfy the precious inequalities [9, 10]

T ±
iαT

±iα � 0 (4)
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the magnetic Hamiltonian (1) density decomposes as
1
2∂inα∂

inα = 1
2T

±
iαT

±iα ± 1
2e

ijfαβ ∂in
α∂jn

β. (5)

Integrating the previous decompositions (5) over the support manifold S and inserting the
formula (2) lead us to rewrite the magnetic Hamiltonian (1) in each topological class specified
by the winding number Q in the form

Hmag = 1
2 J

∫
S

√
g d�T ±

iαT
±iα + 4πJ |Q| (6)

with (±) the sign of Q. Readily from the precious inequalities (4), the magnetic Hamiltonian (1)
yields

Hmag � 4πJ |Q| . (7)

Moreover, in each topological class, the lowest value of the magnetic energy is actually attained
when the self-dual tensor T ±

iα vanishes. In other words, according to the definition (3), the
metastable order parameter fields nα , which actually saturate the Bogomol’nyi bound (7),
satisfy the first-order self-dual differential (or Bogomol’nyi) equation multiplet

∂in
α = ± e r

i f
α
κ ∂rn

κ . (8)

Clearly the Bogomol’nyi decomposition reveals the underlying topology: (i) the inequality
(7) claims that the minimum minimorum of the Hamiltonian in each topological class is
proportional to the topological invariant; (ii) the metastable configurations which actually
saturate the Hamiltonian satisfy something simpler than the usual (Euler–Lagrange) equations
and no explicit solution is needed to compute their energy; (iii) from the computation emerges
a self-dual symmetry; (iv) the decomposition (6) clarifies the stability of the topological
configurations and exhibits a spontaneous energy contribution due to any deformation from
metastable configurations; (v) a deviatoric (or strainlike) tensor T ±

iα is constructed. Usually
not explored, the last two features will appear very relevant below.

Now, we focus on vesicles of arbitrary genus. The large separation of length scales between
the membrane thickness of vesicles and their overall size allows us to describe each vesicle
as a surface manifold S embedded in the tri-dimensional space R

3 [2, 3]. As a result, initially
we focus only on the energy induced by the surface manifold S itself. On the other hand, the
corresponding Hamiltonian has to be invariant under conformal transformations and suitable
for the Bogomol’nyi technique. Nonetheless, we must first choose how to represent the surface
manifold S: we invoke the converse of the remarkable theorem of Gauss [12]. Let S(xk) be
a surface manifold with arbitrary intrinsic coordinates (xk) embedded in the tri-dimensional
ambient space A

3, then there uniquely exist a metric tensor gij (xk) and a shape tensor bij (xk)
related by a definite equation multiplet; the converse is true except for the exact position of the
surface S in the ambient space A

3. Then, with a different notation, we concisely express the
remarkable theorem as

S(xk) ⊂ A
3 ⇐⇒ (

gij (x
k), bij (x

k)
)
. (9)

The geometrical meaning of the couple (gij , bij ) in (9) is revealed by introducing both the
infinitesimal tangential displacement d T over the surface manifold S and the infinitesimal
normal displacement dN to the surface manifold S inside the ambient space A

3; we have

dT · dT = gij (x
k) dxi dxj (10a)

dN · dT = bij (x
k) dxi dxj . (10b)

In differential geometry, the quadratic differential forms (10a) and (10b) are referred to as the
first and second fundamental forms, respectively. Furthermore, the Riemann tensor, which
measures how much a manifold is curved, reduces to

Rklmn = K [gkmgln − gknglm] (11)
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where the Gaussian curvatureK depends only on the metric tensor (gij ) and its first and second
derivatives: such an entity is called a bending invariant or is said to be intrinsic [12,23]. When
the surface manifold S is embedded in a curved tri-dimensional ambient space A

3, then the
intrinsic curvature K splits as

K = G + K̃ (12)

where the extrinsic curvature G satisfies

G = 1
2 e

ij ekl bikbjl (13)

whereas the sectional curvature K̃ characterizes the ambient space. For example, the sectional
curvature K̃ vanishes for the flat space R

3 and is equal to one for the three-sphere S
3. We

complete this brief overview by stating the Gauss–Bonnet theorem [23, 24]:∫
Sg,e⊂A3

√
g d�K = −4π (g + e − 1) (14)

with Sg,e a surface manifold topologically equivalent to a closed surface manifold of genus g
less e points (ends) embedded in A

3.
With this background, we now assume the bending Hamiltonian as the following

functional:

Hb ≡ 1
2 k

∫
S⊂R3

√
g d� gijgkl b

k
i b

l
j (15)

where the phenomenological parameter k describes the bending rigidity. Since the total integral
in (15) is known to be invariant under conformal transformations [25, 26], it remains to show
that our assumption fits the Bogomol’nyi technique as desired. To begin, note that the bending
Hamiltonian Hb formula (15) stresses the similitude with the magnetic Hamiltonian Hmag (1).
Then the self-dual deviatoric tensors are defined as

B±
ij ≡ 1√

2

[
bij ∓ eikejl b

kl
]

(16)

which yield the precious relationships

B±
ijB

±ij = (
λ ∓ λ

)2 � 0 (17)

where λ and λ denote the eigenvalues of the shape tensor (bij ), namely the principal curvatures
of the surface (or support) manifold S. Here the decompositions (5) read

1
2bij b

ij = 1
2B

±
ijB

±ij ± G. (18)

By inserting the previous decomposition (18) in the formula (15) and recognizing the total
curvature (14), the bending Hamiltonian Hb (15) decomposes as

Hb = 1
2 k

∫
Sg,e⊂R3

√
g d� B±

ijB
±ij ∓ 4πk (g + e − 1) . (19)

Note that we have used the fact that, according to (12), the extrinsic curvatureG and the intrinsic
curvature K are equal when the ambient space is flat (K̃ = 0). Existence theorems select the
correct value for the sign (±) and the proper topological classes for vesicles as follows. From
the precious relationships (17) it is evident that the surface manifolds S which actually saturate
the Bogomol’nyi decomposition (19) are the totally umbilical surfaces (λ = λ) and the minimal
surfaces (λ + λ = 0). Since only the round two-sphere S

2 is totally umbilical [23, 24], the
decomposition with sign (+) is relevant only for surface manifolds S0 topologically equivalent
to the round two-sphere S

2; our first key result reads

Hb [S0] = 1
2 k

∫
S0⊂R3

√
g d� B+

ijB
+ij + 4πk. (20)
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It is noticeable that any deformation of the metastable bending configurations for shapes
of spherical topology spontaneously leads to a deviatoric bending contribution à la Fischer
[13–15]: to the best of our knowledge, there is no direct derivation in the literature for such a
bending contribution suggested first by Fischer [13]. Since within the flat ambient space R

3

there is no closed minimal surface (e = 0) whereas minimal surfaces of genus g (g � 0) with
e ends (e � 2) do exist [24], the decomposition with sign (−) is relevant only for surface
manifolds Sg,e topologically equivalent to such minimal surfaces Sg,e; our second key result
immediately reads

Hb

[Sg,e

] = 1
2 k

∫
Sg,e⊂R3

√
g d� B−

ijB
−ij + 4πk (g + e − 1) . (21)

Here any deformation of the metastable bending configurations spontaneously leads to a mean
curvature (or anti-deviatoric) bending contribution à la Helfrich [16] widely employed to
describe bending phenomena [1–3]. Note that the minimal surface S0,2, namely the catenoid, is
the elementary neck used to build or analyse numerically vesicles of arbitrary genus g [2–4]. We
cannot proceed much further unless we invoke an assertion due to Chen which claims [25,26]∫

S⊂R3

√
g d� 1

2 bij b
ij =

∫
c(S)⊂c(R3)

√
gc d�c

[
1
2 b

c
ij b

cij + K̃c
]

(22)

where c corresponds to an arbitrary conformal transformation. Consequently the bending
Hamiltonian Hb (15) extends as

Hb = 1
2 k

∫
c(S)⊂c(R3)

√
gc d�c

[
bcij b

cij + 2K̃c
]
. (23)

It is easily seen that the extended bending Hamiltonian Hb (23) decomposes as

Hb= 1
2 k

∫
c(Sg,e)⊂c(R3)

√
gc d�c Bc±

ijB
c±ij ∓ 4πk (g + e − 1) + 2kC±

c

with C+
c = 0 and C−

c =
∫
c(Sg,e)⊂c(R3)

√
gc d�c K̃c. (24)

Consequently, the Chen assertion (22) strongly suggests applying existence theorems for
minimal surfaces living in curved tri-dimensional space A

3. To illustrate this point, we shall
establish Bogomol’nyi relationships for closed surfaces. A theorem due to Lawson [27] claims
that there exist closed minimal surfaces ξm,n of arbitrary genus g = mn in the three-sphere S

3

(K̃ = 1); ξ0,n is the round two-sphere S
2, ξ1,1 the flat torus (i.e. the Clifford torus). Furthermore,

the Willmore–Kusner conjecture [28–31] asserts that the surfaces ξg,1 actually minimize the
functional C−

c in (24): we may have

#g ≡ inf
Sg,0⊂R3

[ ∫
c(Sg,0)⊂c(R3)

√
gc d�c K̃c

]
=

∫
ξg,1⊂S3

√
g d�. (25)

Readily the Bogomol’nyi decomposition for closed surfaces (e = 0) takes the form

Hb

[Sg

] = 1
2 k

∫
c(Sg)⊂S3

√
gc d�c Bc−

ijB
c−ij

+ 4πk (g − 1) + 2k#g (26)

where the conformal transformation cmaps R
3 to S

3. Accordingly, the Bogomol’nyi technique
combined with the Chen assertion (22) allows us to measure how much a surface manifold
is deformed from any surface which is minimal inside a certain curved ambient space A

3.
Thus, without loss of generality, the Willmore–Kusner conjecture (25) enables us to outline
through the formula (26) our third key result: any deformation of the metastable bending
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Figure 1. Lawson sequence #g: circles represent exact values, crosses numerical rough estimates
computed with Brakke’s surface evolver [32]. The bold fitted curves describe the estimate of #g

as g tends to infinity [30]: #g = 8π − c/g + O(1/g2) where −c is the slope of the inset plot.

(This figure is in colour only in the electronic version)

configurations for shapes of non-spherical topology spontaneously leads to a mean curvature
bending contribution à la Helfrich up to a conformal transformation of the ambient space.

Before summarizing let us expose how the bending energy bounds (i.e. the Bogomol’nyi
bounds) are governed. From the Bogomol’nyi decompositions (20), (21) and (26) the
Bogomol’nyi bounds are

Hb[Sg,e]�
{

2#gk + 4πk (g − 1) if g�0 and e = 0

4πk (g + e − 1) if g�0 and e�2.
(27)

Obviously the Bogomol’nyi bounds for vesicles (27) are proportional to the bending rigidity
k and separate into two parts: a closure bending energy 2#gk and a genus/end bending energy
4πk (g + e − 1). Whereas the bending energy per genus/end is straightforward to compute
(4πk), there exists no literal formula for the Lawson sequence #g yet: for the round two-
sphere S

2 and the flat torus ξ1,1 the Lawson sequence #g takes respectively as exact value
#0 = 4π and #1 = 2π2 (circles in figure 1); for higher genus we have computed numerical
estimates (crosses in figure 1).

To summarize our key results concisely expressed in formulae (20), (21) and (26) the
Bogomol’nyi technique, extended forward with existence theorems from differential geome-
try, allows us to show that any deformation of the non-trivial metastable shapes (which are
clearly identified) generates a bending elastic energy contribution which falls in two distinct
categories with respect to the topology of the shape: (i) for shapes of spherical topology a
deviatoric bending contribution à la Fischer [13–15] spontaneously arises; (ii) for shapes of
non-spherical topology a mean curvature bending contribution à la Helfrich [2,3,16] (up to a
conformal transformation of the ambient space) spontaneously emerges. We observe that this
splitting comes from the breaking of the self-dual symmetry of the Bogomol’nyi relationships
by existence theorems from differential geometry. Besides, the Bogomol’nyi relationships
allow us to compute both the bending energy per genus/end and the bending closure energy
for vesicles regardless of their shape.

As a further illustration, our approach leads to a clear understanding of geometrical frus-
tration phenomena experienced by magnetically coated vesicles [18–21]: the presence of the
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double Bogomol’nyi decomposition generates a competition between magnetic solitons and
shapes which tend to saturate the magnetic energy (1) and the bending energy (15), respec-
tively. More precisely, when at least one deviatoric tensor cannot vanish, the balance between
the two deviatoric energies releases the frustration: hence both magnetic and geometric effects
are manifest in accordance with the deviatoric energies, for example by removing a mismatch
between magnetic and geometric (or underlying support) length scales.

In conclusion, our approach gives in a rather natural manner the Bogomol’nyi relation-
ships for vesicles: their typical features combined with existence theorems from differential
geometry show that spontaneous bending deformation from metastable bending shapes splits
into two distinct topological classes (shapes of spherical topology and shapes of non-spherical
topology): in other words, topology may be considered to describe bending phenomena–in
contradiction with customary phenomenological approaches [2, 3]. Furthermore, the appear-
ance of Bogomol’nyi relationships for vesicles provides a powerful guide for understanding
vesicles and enlarges the application field of the Bogomol’nyi technique (traditionally used in
fields ranging from condensed matter physics to high-energy physics) to elastic and geometrical
phenomena in soft condensed matter.
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